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image may be regarded as the selection of a right- 
handed coordinate system compatible with a rotation. 

These group-theoretical considerations justify the 
results of Jones (1986). 

4. Practical procedure 

In fact the ambiguities are handled by measuring a 
suitable physical property that specifies the allowed 
object as far as possible. As crystal structures are 
usually determined by diffraction experiments it is 
convenient to use properties derivable from X-ray 
diffraction data. 

In the case of paramorphic merohedries the struc- 
ture-factor moduli can be used for fixing the 
ambiguity of the description. The operation Ri (rota- 
tion 2 or mirror m) that is used for the construction 
of the characteristic coset correlates pairs of structure 
factors. The ratio q of their moduli changes to 1/q 
with the transformation to the other image. 

In the case of non-centrosymmetric structures 
properties must be regarded that are sensitive to struc- 
ture-factor phases. This can be done by comparing 
the moduli of Friedel pairs affected by anomalous 
dispersion or by measuring suitable triplet phases. 
For enantiomorphic merohedries this means the 
determination of the absolute configuration (for 
chiral species) or conformation (for achiral species). 
For hemimorphic and roto-inversional merohedries 
this means fixing the ambiguity in the description: 
The operation 1 correlates the sign of suitable triplet 
phases or the moduli of suitable Friedel pairs of 
structure factors; their values change with the trans- 
formation to the other image. 

As a consequence of these considerations two types 
of absolute structures can be distinguished. An 
absolute structure can be determined by experiment 
in the case of enantiomorphic merohedries because 
left-handed coordinate systems are excluded. In the 
case of non-enantiomorphic merohedries an absolute 
structure is uniquely determined by the selection of 
one description among different equivalent 
possibilities. The difference in the two cases corre- 
sponds to the special role of chiral properties. 

The transfer of these terms to space groups and 
crystal structures is proposed, because these consider- 
ations do not only affect problems of crystal structure 
determination but also problems in structure descrip- 
tion and standardization. The extension on 
klassengleiche subgroup relations will, however, need 
further discussions. 

The authors thank Mr E. Weckert for helpful 
discussions. 
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Abstract 

The section method is applied to derive the Penrose 
pattern and related patterns with a ten- or fivefold 
axis. These are derived from a four-dimensional 
decagonal crystal or from a five-dimensional icosahe- 

0108-7673/88/040508-09503.00 

dral crystal as a two-dimensional section. The two 
descriptions correspond to the three- and four- 
dimensional ones in the usual superstructure and the 
Penrose pattern can be regarded as the superstructure 
in the four-dimensional space. The diffraction 
intensities and symmetries of these patterns are dis- 
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cussed. The present study indicates that the point 
group in the quasicrystals is noncrystallographic but 
(m+d)-reducible similarly to that in incommensu- 
rate structures, where m and d are the dimension of 
the real space and the orthogonal complement to it. 

I. Introduction 

Since the discovery of the icosahedral quasicrystal in 
AI-Mn alloys (Schechtmann, Blech, Gratias & Cahn, 
1984), much experimental and theoretical work has 
resulted in the discovery of a new type of quasicrystal 
found in AI-Mn and A1-Fe alloys (Bendersky, 1985; 
Chattopadhyay, Lele, Ranganathen, Subbana & 
Thangaraj, 1985; Fung, Yang, Zhou, Zhao, Zhan & 
Shen, 1986). This has a tenfold axis and the structure 
is periodic along the axis. In this so-called decagonal 
phase, the diffraction pattern normal to the tenfold 
axis is similar to that of the Penrose pattern (see 
Yamamoto & Ishihara, 1988). This suggests that the 
structure projected along the axis is closely related 
to the distribution of the vertices in the Penrose or 
generalized Penrose pattern. As is known for the 
icosahedral quasicrystal, the vertex model explains 
the characteristic feature of the diffraction pattern 
(Duneau & Katz, 1985; Katz & Duneau, 1986; Elser, 
1986) but the real structure may not be obtained by 
simple decoration from the vertex model (Ishihara & 
Shingu, 1986). However, it plays an important role 
in the investigation of the structure of the icosahedral 
phase. Therefore, we consider the vertex model as a 
preliminary to the structure determination of the 
decagonal phase. In this paper, the theoretical insight 
of the two-dimensional (2D) Penrose pattern and 
related structures is given. Based on this consider- 
ation, the structure of the decagonal phase will be 
considered by Yamamoto & Ishihara (1988). 

There are several methods of obtaining the Penrose 
pattern. We discuss two methods in this paper which 
are modifications of the projection method developed 
by de Bruijn (1981), Kramer & Neri (1984), Kalugin, 
Kitayev & Levitov (1985), Duneau & Katz (1985) and 
Elser (1986). In one method, the structure is obtained 
from a 4D decagonal crystal (Janssen, 1986), while 
in the other the same structure is obtained from a 5D 
icosahedral crystal (Henley, 1986). In both methods, 
the structure is given by a 2D section of a higher- 
dimensional crystal. We call this method the section 
method. This is convenient for considering the rela- 
tion of the quasicrystal and the modulated structure 
because the latter is known to be given by a 3D section 
of a higher-dimensional crystal and the superspace 
approach is available to both cases on the same basis. 

The symmetry of a quasicrystal is described by a 
superspace group. For the Penrose pattern, it is given 
by a 4D superspace group (Janssen, 1986). This is 
understandable from the fact that the 4D description 
is possible as mentioned above. On the other hand, 

the 5D description makes us imagine the higher- 
dimensional description of the commensurately 
modulated structure (superstructure) (Yamamoto, 
1982a, b). In this paper, we show that the two methods 
mentioned above are equivalent and the relation 
between these two corresponds to that of the usual 
description in the 3D space and the higher- 
dimensional one in the superstructure. Thus the situ- 
ation is analogous to the superspace approach to the 
superstructure. From this and for other reasons men- 
tioned later, we can recognize that the Penrose pattern 
is a superstructure in the 4D space. In the (usual) 
superstructure, even if we fix the modulation function, 
the structure depends on the phase of the modulation 
wave. In other words, it depends on the position of 
the section in the superspace. Consequently, its sym- 
metry also depends on the section. A similar situation 
exists in the Penrose pattern and the peculiar proper- 
ties appearing in this pattern and the related structures 
mentioned below are understandable by analogy with 
the superstructure. 

The section method is convenient for calculating 
the structure factor of the Penrose pattern as in the 
projection method (Zia & Dallas, 1985; Duneau & 
Katz, 1985; Elser, 1986). The structure factor 
observed in real space is regarded as the projection 
of the Fourier spectra in the higher-dimensional 
space. The structure factor is easily obtained by this 
method. It is shown, however, that there are an infinite 
number of structures giving diffraction patterns 
similar to each other, which are called the generalized 
Penrose patterns. These are obtained from the same 
5D crystal by taking different sections. We discuss 
why the generalized Penrose patterns give similar 
diffraction patterns in analogy with the superstructure 
and clarify the change of 4D symmetry with the 
selection of the section. 

The arrangement of the paper is as follows. We 
discuss the relation between the usual and higher- 
dimensional descriptions in 1D superstructures in § 2. 
The derivation of the generalized Penrose patterns 
from a 5D crystal is described in § 3. In § 4, the 4D 
description and the relation with the 5D one are 
shown and the symmetry of the generalized Penrose 
pattern is discussed. The structure factor is easily 
obtained by both methods. The structure-factor for- 
mulas in 4D and 5D descriptions and their interrela- 
tion are discussed in § 5. The higher-dimensional 
description of the superstructure in the 3D space is 
extended to a more general case in § 6. Finally, the 
necessary condition for the superspace group describ- 
ing the symmetry of quasicrystals is discussed in § 7. 

2. Superspace approach to the superstructure 

It is known that the incommensurately modulated 
structure is conveniently described in the superspace 
and its symmetry is specified by a superspace group 
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(de Wolff, 1974; Janner & Janssen, 1977, 1979). On 
the other hand the commensurately modulated struc- 
ture (superstructure) is described in the 3D space. 
However, the superspace approach is also applicable 
to the superstructure and for some purposes this is 
more convenient than the ordinary treatment 
(Yamamoto, 1982a, b). We review the superspace 
approach to the superstructure in this section for latter 
discussions. Consider the superstructure in a 1D lat- 
tice for simplicity. This is described in the 2D space. 
An example is shown in Fig. 1. This has a sinusoidal 
modulation with wave vector k =  a*/3 (Fig. lb). In 
the superspace approach the real structure is given 
as a section of a higher-dimensional crystal (Fig. 1 a). 
The real space is called the external space and its 
orthogonal complement the internal space. The exter- 
nal and internal spaces are horizontal and vertical 
lines in this case. As is clear from the figure, the unit 
cell in the external space is triplicated owing to the 
existence of the displacive modulation. It is noted 
that the structure and its symmetry depend on the 
position of the section for a given modulation wave. 
For example, along the thick and dotted lines the 1D 
structure has an inversion point while any line 
between them breaks the inversion symmetry. 

The 2D crystal in Fig. l (a)  gives the diffraction 
pattern shown in Fig. l(b). The structure factor is 
given by the Fourier transformation of the crystal, 

1 

F(hk)=~exp[27ri (hx+ky)]dt ,  (1) 
0 

where the coordinates of the string atom x and y are 
a sinusoidal function of t with amplitude u, 

x=usin(2"n't) ,  y = ( u / 3 )  sin(27rt)+t. (2) 

On the other hand, the 1D section of this crystal gives 
the structure factor obtained from the 2D one by 
projection along the internal space. This is due to a 
property of the Fourier transformation. An infinite 

/ .  

(a) 

/ / IT.' 
i.A A .d~.,T 
i7 V-~- Ir_HL+~ ~ /  / ~,-~ 

/ ,/ / ,/ 
/ /  / /  / /  /,' / 

(b) 

Fig. 1. Two-dimensional description of the superstructure in the 
one-dimensional lattice. (a) The superstructure is given as a 
section of the two-dimensional crystal, while the structure factor 
is obtained from (b) the Fourier spectra of the two-dimensional 
crystal by the projection normal to the external space. 

number of reflections superimpose on the same point 
in the projection. For any integer n, hk and h- n, k + 3 n 
are superimposed by the projection. The projected 
reflection is uniquely specified by hk within the range 
-1-< k-< 1. The main reflection has k = 0 while the 
satellite reflection is specified by k -- + 1. The structure 
factor of the 1D superstructure is given by the summa- 
tion of the structure factor F ( h -  n, k + 3 n )  over n. 
Using the expression for the periodic 6 function with 
period ~, ~n exp (6zrint) = A(t)/3,  we have 

2 

/3(hk)=~ ~ exp[2rri(hx,+ky~)] (3) 
~ ' = 0  

for the hk (-1 -< k <- 1) reflection in the 1D space, 
where x,, y~ are the coordinates at t = to+ v/3. The 
position of the section is determined by to. The projec- 
ted structure factor (3) depends on to. This reflects 
the fact that the real structure is different depending 
on the position of the section. Noting that y~= 
xJ3+to+Z, /3 ,  we observe that (3) is the ordinary 
structure-factor formula for the superstructure. As is 
usually the  case if the amplitude u is small, the 
structure factor F(hk) for a reflection with large k 
gives a weak intensity. Then the main and satellite 
reflections, F(hO), F(h + 1), are well approximated 
by F(hO) and F(h + 1), which are independent of to. 
Therefore, when the amplitude u is small the structure 
factor of the commensurately modulated structure 
with a fixed modulation wave gives almost the same 
intensity for the structure at any section. A similar 
situation appears in the generalized Penrose patterns 
as shown below. 

3. Derivation of generalized Penrose patterns from R s 

The mathematical derivation of quasi-periodic pat- 
terns has been introduced by de Bruijn (1981) and 
developed by several authors (Kramer & Neri, 1984; 
Kalugin et al., 1985; Duneau & Katz, 1985; Elser, 
1986). This procedure, called the projection method, 
is briefly reviewed here for comparison with the sec- 
tion method used in this paper. When the cubic lattice 
in the n-dimensional space R" is spanned by the 
orthogonal unit vectors di ( i=  1 , 2 , . . . ,  n) and the 
two subspaces R m and R " - "  are given, the unit 
vectors d~ can be decomposed into two vectors p~ and 
qi by the projection on the subspace R"  and its 
complementary subspace R "-m. The quasiperiodic 
pattern in R " is obtained by the following procedure. 

n /1 
For the lattice point r=Y~i=~ hidi in R , we project r 
into R m if its R "-m components t = Y,~hiq~ exist inside 
the volume V={Y.~A~q~[O<A~<I}. We take V= 
{~h~q;[-½ < h~- % < ½} hereafter for the sake of com- 
parison with the section method mentioned below, 
where Y, are real numbers. Then the original V corre- 
sponds to the case of Y~ = ½ for all i. The projected 
points s = ~,h,pi form a quasi-periodic pattern in R m 
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when the subspaces are appropriately chosen. The 
condition for the selection of subspaces giving rise 
to the quasi-periodic lattice has been discussed by 
Gahler & Rhyner (1986). 

We introduce other orthogonal unit vectors at of 
which the first m vectors span R m and the remaining 
n - m  ones span its orthogonal complement R "-m. 
We call these two the external and internal spaces 
according to the terminology of the superspace group 
theory. The coordinates rt referred to dt are related 
to the new ones (xi to ai) by the orthogonal transfor- 
mation r~ = ~jMux j. The unit vectors di are also related 
to at by the same relation because of the orthogonality 
of the matrix. The orthogonal matrix M defines the 
subspaces. The vectors Pt and qt are then given by 

m M n 
~-"j=l ijaj and ~j=,,+l Mijaj .  

This method is equivalent to the section method 
mentioned here. In the latter, we place at ~t3'tqt in 
the unit cell in R n the 'atom' spreading only in the 
internal space R n-m, the shape of which is given by 
V =  ] { ~ i A i q i ] - i  < Ai - Ti < l}.  T h e  quasi-periodic p a t -  

t e r n  is given by an m-dimensional section of such a 
crystal in R n. 

An example of the equivalence of these two 
methods is given for a 1D quasi-crystal. In particular 
we consider the Fibonacci chain. This corresponds 
to the case of n = 2 and m = 1 in the projection method 
mentioned above. It is given by the matrix M, 

1 (:-7.1) (4) 
(1 + r 2) 

where r is the golden ratio (1 + , / 5 ) / 2  (Janssen, 1986). 
In this case, V is the vertical line within the range 
from (1 - r ) /2 , / (1  + r 2) t o  ( -1  + r) /2 , / (1  + r 2) pro- 
vided that y] = 3'2 = 0 for simplicity (see Fig. 2). The 

projection method states that if lattice points exist 
between the two horizontal lines with interval V(A 
and B in Fig. 2), such points are projected along the 
vertical line. Thus we have a quasi-periodic pattern 
on the 1D space. On the other hand, the section 
method places the vertical bar with length V at each 
lattice point and takes a section on the horizontal 
line. This gives the same point configuration as that 
of the projection method when we take a section 
through the origin. It can be shown that the more 
general case with Yt ~ 0 corresponds to the section 
through ~tyiqt. If we call the volume V placed at 
each lattice point an atom and the structure obtained 
the crystal, we can say that the Fibonacci chain is 
given as a 1D section of the 2D crystal with a string 
atom at each lattice point of the square lattice. 
Hereafter we use the section method. 

We consider the Penrose pattern. This is obtained 
from the rhombic-icosahedral  atom defined by V =  
{Y~t3',qtl-½< At <½} located at the lattice point of the 
hypercubic lattice in R 5 (Henley, 1986) (see Fig. 3). 
The two subspaces are defined by the matrix M with 
elements 

/ C14 S 1 C 2 S 2 1/`/2 / 
c2 s2 c4 s4 1/`/2 

4 (2 /5 )  c3 s3 c, s, 1 /42 , (5) 

s4 c3 s3 1/`/2 

0 1 0 1/,£2 

where cj=cos(2"n'j/5) and sj=sin(2"rrj/5) ( j =  
1, 2 , . . . ,  5). This corresponds to the case of n = 5 and 
m = 2 in the projection method. The 5D lattice has a 
period in the 3D internal space. All the lattice points 
are on the planes normal to as with the interval 1/`/5. 
In this case the structure in the external space depends 
on the position of the section along as as is inferred 

A ~ " C 

B 

Fig. 2. Fibonacci chain. This is obtained from the two-dimensional 
square lattice by projecting along the internal space when a Fig. 3. Rhombic-icosahedral atom. The Penrose pattern is derived 
lattice point is between the two lines A and B (projection from the crystal in which the atom is placed at each lattice point 
method) or by taking a section of the crystal with the string atom of the five-dimensional hypercubic lattice. A, B, C, D, E corre- 
at the horizontal line (section method), spond to t, = -2, -1, 0, 1, 2. (See text.) 
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from the analogy with the superstructure discussed 
in the previous section. Consider the section through 
r=Y,~y~q+ in R 5. Then the a5 component of r, xs, is 
given by Y~iy~/x/5 from M. Thus x5 specifies the posi- 
tion of the section. 

For convenience, we introduce y=x/5xs=~,y~. 
I Then we have different structures for 0 <- 3' <- _~ which 

are not superimposed by any translation, rotation or 
inversion to each other (Socolar, Lubensky & Stein- 
hardt, 1986). In other words, these belong to the 
different local isomorphism classes (Levine & Stein- 
hardt, 1986). In this way, we have an infinite number 
of patterns derived from the same 5D crystal. These 
are called the generalized Penrose patterns (Pav- 
lovitch & Kleman, 1987; Conway & Knowles, 1986; 
Jaric, 1986) because one of these (3' =½) agrees with 
the Penrose pattern derived by Mackay (1982). Three 
examples are shown in Fig. 4. The generalized Penrose 
patterns are characterized by the appearance of the 
tenfold vertex. The density of tenfold vertices takes 
a maximum for 3' = 0 and reduces with increasing 3'. 
The Penrose pattern (3' = ½) is the limiting case where 
the density becomes zero. Three tenfold vertices are 
found in Fig. 4(a)  and one in (b). 

As is clear from the above derivation, the point 
configuration given by this method is recognized as 
the section of the 5D crystal• It should be noted that 
the crystal does not have hypercubic symmetry but 
has icosahedral symmetry, since the internal space is 
not equivalent to the external space and the atom is 
icosahedral in the internal space. 

4. Four-d imens ional  description of  general ized 
Penrose  patterns 

The Penrose pattern is given as a 2D section of a 4D 
decagonal crystal (Janssen, 1986), which has four 

' q l '  

.o:..o.):: .e.. :.. 
• e.+":'.'-;':o'"."o.. 

.e.=- o . . o .  ; .%0 :0 - . , ' 2e .  

" o , f . "  %O .° % . :  ° .O . "  " . ' , o "  
• ,....,...,,.:,:.., • 

.go 

(a) 

"qt" "Q." 
.,:..e.::: . t .  ~,- .,~..-:::" ., .  ~. 

O ° D O ° O • . " . . ' i ! ' !  . i . . ' - . .  o." : ,  . . :  " : . .  ! . "  .o  . 
, , . .  , . . . + , . .  o ,  , . , , .  i+,._ , .  : , . ; . ,  ,. +,. • • o • • o.. o • • . .o +e i i .  • • 

~ , ' . o y i O : " % , ;  0:O. '  o . ' , d  ~ . ' .O ' ,O 0.?~, g 0:O•" ° . ' , i /  

o.-'.,:'..ii,ii.i.':..'-.o " " e. :;.:.l..o..;:.e " 
• ~ ¢ ' ~ . : . ° . . q i " s ~ .  " "  ° :  " ' "  " l l .  O ' ' •  . 'O  .In+" 

• t .  . t .  

(b) (c) 

Fig. 4. Generalized Penrose patterns (upper) and their diffraction 
intensity (lower). The radius of the circle in the diffraction 
pattern is proportional to the structure factor. (a) y = 0. (b) 3' = 
". (c) 3'=½. 

atoms in the decagonal unit cell. This crystal is 
obtained from the 5D icosahedral crystal discussed 
in the previous section as a 4D section perpendicular 
to the body-diagonal (11111 ) direction referred to d~. 
Therefore the diffraction pattern (structure factor) is 
given by the projection of the 5D Fourier spectra 
along the axis. We first consider the following unit 
vectors instead of the orthogonal unit vectors d, ( i =  
1, 2 , . . . ,  5 and d~. dj = 6o). For the first four vectors 
we take d'~ = d~-d.~ and as the fifth vectors we employ 
d.~ = ~ = 1  d~. The transformation matrix S defined by 

'= Y'jSod ~ is written as di 

(i000 1 / 
1 0 0 - 1  

0 1 0 -1  . 

0 0 1 -1  

\ 1  1 1 1 1 

(6) 

Because d e t ( S ) =  5, the lattice is spanned by d~ and 
five centering translations: v(11111 ) ' /5 ( v = 
0, 1 , . . . , 4 )  where the prime means the quantity is 
referred to d'i. The sublattice spanned by d'i ( i =  
1, 2 , . . . ,  4) constructs the icosahedral lattice in the 
4D space as is clear from the metric tensor (Brown, 
Billow, Neubiiser, Wondratschek & Zassenhaus, 
1978). The metric tensor has the form 

,0 (i B B i /AB  0 0 A BB 0 (7) 

with A = 2 a  2, B = A / 2 ,  C=A/ IO,  where a is the 
length of the unit vector d,. The decagonal point group 
is the subgroup of the icosahedral one in R 4. The 
above derivation implies that we do not need the 
hypercubic lattice to obtain the decagonal lattice as 
a 4D section. Even for the icosahedral lattice, the 
hypercubic is not necessary• For example, if we 
elongate the hypercubic lattice along the (11111) 
direction we also have the icosahedral lattice in R". 
Furthermore, the atoms spreading in the internal 
space reduce the symmetry of the crystal in R 4 f r o m  

the icosahedral to the decagonal. This point will be 
discussed in § 7. The decagonal coordinates r'~ with 
respect to d'+ are related with the cubic ones r~ to d, 
by r'~ = ~ j  S~trj, where the tilde means transposition. 
S -t is given by 

(:i _1 _, _,-'t - 4 - 1  - 1  - 1  

_1 - 1  4 - 1  - 1  

5 -1  -1  4 -1  

\ 1 1 1 1 1 

(8) 
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The unit vectors d*' reciprocal to d~ are also related 
to d* by the same relation. 

As is clear from (5) and (6) d~ is parallel to a5 (see 
Appendix). In addition (7) shows that the d'i ( i =  
1, 2 , . . . ,  4) are normal to it. Therefore the 2D external 
space through 3/d'i/5 is the subspace of the 4D hyper- 
plane through the same point and normal to the d~ 
axis. From this fact we can obtain the generalized 
Penrose pattern from the 4D hyperplane as shown 
below. 

Consider such a hyperplane. Then the atoms at the 
positions v ( l l l l l ) ' / 5  (u--O, +1, ±2) intersect with 
the hyperplane at the different positions shown in 
Fig. 3. The shape of the intersection is a pentagon or 
decagon centered at v ( l l l l ) ' / 5  in R 4. Their shape 
depends on v because for different v the plane inter- 
sects the rhombic-icosahedral atom at a different posi- 
tion. In the case of 3'--½, four sections are regular 
pentagons but the remaining one corresponding to 
v = 2  reduces to a point. This agrees with the 4D 
description of the Penrose pattern (Janssen, 1986). 
The Penrose pattern is obtained by taking the 2D 
section. For other % we have a generalized Penrose 
pattern which consists of the same two unit rhom- 
buses as those of the Penrose pattern. 

We consider the symmetry of the generalized Pen- 
rose pattern. The decagonal lattice is invariant under 
the group generated by a fivefold rotation, a mirror 
and inversion. The action of these symmetry operators 
on the reciprocal unit vectors d*' ( i - -1 ,  2 , . . . ,  4) is 
given by a 4 × 4  matrix F(R) :  

r(c~')= ( ! 1 o  Oo o 1 i) 
- - 1  - 1  - 

r ( ~ r o )  = (! 0 0 i) 0o 1 o01 
(_ oo !) 

-1  0 
F ( I ) :  0 -1  " 

0 0 0 - 

(9) 

The action to a* is given by F ' ( R ) =  
(/~/~)F(R)(/~/S) -1. Therefore the atom spreading in 
the internal space is transformed by the matrices 

::)(1 ° 0 ) ( 1  01) 
-s2 0 

The matrix group is isomorphic to D5 x C2 or D10. 
The atoms are located at the Wyckoff positions 
v(1111)'/5 (v = 0, +1, +2) in the decagonal coordin- 
ate system. The site symmetry for these is D~o for 

v = 0 and D5 for other v when 3/= 0. For other 3, each 
atom has D5 symmetry from its shape, as is clear from 
Fig. 3. This means that at least the structure has D5 
point symmetry. In two cases with y - - 0  and ½, the 
structure is invariant for the inversion. In the former, 
the atom at the origin has inversion symmetry. The 
atoms at ±(1111)' /5 are transformed to each other 
by the inversion and the same relation holds for atoms 
at ±(2222)'/5. The structure has the inversion center 
at the origin. On the other hand, for 3, = ½ the four 
atoms are at v(1111)'/5 (v = - 2 , - 1 ,  0, 1). [The atom 
at (2222)'/5 shrinks to a point so that the atom inter- 
sects only at one point with the external space and 
is negligible.] In this case the inversion center is 
shifted to (2222)'/5. [When we take the origin on the 
inversion center, the above four atoms are at the 
Wyckoff positions v(1111)'/5 (v = 1, 2, 3, 4) with the 
site symmetry of Ds.] For other 3/, the inversion 
symmetry breaks down because each atom has neither 
the inversion symmetry nor a counterpart related to 
the inversion. Thus we have the tenfold axis for 3/= 0 
and ½ and fivefold axis for the other 3/. The number 
density of the vertices in the generalized Penrose 
pattern is independent of 3/, as shown by Yamamoto 
& Ishihara (1988). This shows that only two cases 
have the tenfold axis among an infinite number of 
generalized Penrose patterns with the same density. 

5 .  S t r u c t u r e  f a c t o r s  

First we employ the 5D description of the generalized 
Penrose patterns. In this case, we consider the struc- 
ture which is given by the rhombic-icosahedral atom 
at each hypercubic lattice point. The Fourier spectra 
have a finite value at the reciprocal-lattice points 
h=~ihid*i ,  where d* ( i = 1 , 2 , . . . , 5 )  are the unit 
vectors reciprocal to di. For these points the structure 
factor is given by 

Fh = ~ exp (27rih. r) dv, (11) 
v 

where r=Y'.i riqi and the integral is taken over the 
rhombic icosahedron in the internal space which is 
defined by -½ < ri < ½. 

The generalized Penrose pattern is also obtained 
from a hyperplane normal to the a5 axis, as mentioned 
in § 4. Therefore we take the projection along this 
axis for the diffraction pattern. Then an infinite num- 
ber of lattice points are projected on the same point 
in R 4. The reciprocal-lattice vector h=Y.ihid* is 

I d * l  expressed as ~ i h i - i  by using the decagonal unit 
vectors, where h~ = h i -  h5 for i = 1, 2 , . . . ,  4 and hl = 
~ _  ~hi. The decagonal indices have the reflection con- 

. 7  4 t dmon ~i=~ h i+  hl = 0 (rood 5) for general reflections 
because the centering translations exist. Since the unit 
vector d*' is normal to d* (j  <-4), for any integer n 
reflections with h ' t " t " t " t " + 5 n  ( - 2 < h ~ < 2 )  are 1 , ~ 2 , ~ 3 u ~ 4 , ~ 5  - -  _ _  

projected on the same position in R 4. Therefore we 
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have to take a summat ion  with respect to n to obtain 
the projected structure factor• For the reflection with 
h '=~'~4 h ' a '  in R 4, we have 
" "  /,,,J i =  ~ l - - l  h]-h'4 3 , = 0  

^ { [ ~  o o o o  1.ooo 
Fh,= ~v~ ex p 2" r r i  h'ir'i+(h'5+5n) 0 1 1 0  0.057 

i 1 1 1 2 1 0.053 
0 1 2 0 0.020 I} 1 2 2 1 0.392 

x ( r ~ - s )  dr'dr'5 (12) 0 2 2 1 0"460 
0 2 2 0 0"089 
1 2 3 1 0"070 

where s = y /5 ,  r~ (i = 1, 2 , . . • ,  5) are the d~ com- 1 3 3 2 0.097 
ponents of  r and dv is expressed by dr~ and its 1 3 3 1 0.012 
complement  dr ' .  Using the expression for the periodic 0 3 3 1 0.046 

1 3 4 2  O.759 
8 function with period ~, ~,exp[ lOTrin(r '5-s )]= 13 41 0.046 
A(r '5-s ) /5 ,  we finally obtain 2 4 4 2 0.069 

1 4 4 2 0"257 
( [ ~  ] }  1 4 4 1  0"323 

t 2 4 5 3 0.098 
Fh,=-~ ~ exp 27ri h~(r~+l,/5) d r '  (13) 2 4 5 2 0"062 

~,=0 V~, i = l  
1 4 5 2 0"044 
2 5 5 3 0"088 

where V~ is the section of  the rhombic  icosahedron 2 5 5 2 0.493 
at the plane through ( s +  v/5)d~ and we have used 1 5 5 3 0.072 

• • 4 t ~ 1 5 5 2 0.071 the reflection condmon,  ~+=~ h i + h s = 0  (mod 5). The 2 5 6 3 0"151 
formula (13) agrees with the structure factor for five 2 5 6 2 0.214 
atoms at u ( l l l l ) ' / 5  ( u = 0 ,  1 , . . .  ,4) in e 4. The ana- 3 6 6 3 0.051 
lytical expression of the structure factor is given by 1 5 6 3 0.902 

1 5 6 2 0"021 
2 6 6 3 0"063 

Fh=~exp[27ri(~,h'iu/5)lF~(h' ) ,  (14) 26623673 0"3370.093 

~,~0 1 6 6 3  0"089 
2 6 7 4  0"069 

where F~(h ') is the Fourier  integral of  the polyhedron 2 6 7 3 0.026 
corresponding to the uth plane in Fig. 3. Noting that 2 6 7 2 0.040 

3 7 7 3  0-679 
each plane is in general  decagonal,  we can write this 1 6 7 3 0.071 
in the form 2 7 7 3 0.213 

......... 2 7 7 2 0"060 

r 
F'(h') = ~ l Fo(el, e2, R-th") + Fo(e2, e3, R-'h")], 

I.... 

(15) 

F0(et, e2, h 'i) = ete2 sin 0t2{a~[exp (ia2) - 1] 

- a2[exp (ia~) - 1 ]} 

× [ a~a2(a~- a2)] -~, (16) 

where ej ( j  = 1, 2, 3) are edge vectors of  two triangles 
constructing the decagon (Fig. 3), ej = ]e2], h 'i is the 
internal component  of  the diffraction vector h', 012 is 
the angle between two vectors e~ and e2, and a t = 
2~rej. h '~ ( j  = 1, 2). In (15) R runs over all the sym- 
metry operators in the point  group Ds. For a pen- 
tagonal plane the second term in (15) is dropped.  

The diffraction patterns for three cases are shown 
in Fig. 4 and the structure factors are listed in Table 
1. As shown in the figure, the diffraction patterns with 
different y are similar  to each other. This is considered 
as follows. The y dependence  of  the diffraction pat- 
tern comes from the superposi t ion of reflections in 
R 4. Therefore,  i f  the structure factors Fh with 
h~ , '  t,' ~,' t,' ,,2,,3,,4-5+5n ( - 2 -  < hl  < 2) are all weak except for 
n =0 ,  the structure factor Fh, for h 't''t''l,,2,,3h4' in R 4 is 
approximated  well by Fh for the case of  n = 0 and 

Table 1. The normalized structure 
generalized Penrose patterns for three 

factors of  the 
cases" 7 = 0, I, 

3'=~ 3'=½ 
1 "000 1 "000" 
0"059 0"061 
0"056 0"060 
0"047 0"063 
0"387 0"382 
0-462 0"463 
0.089 0-090 
0.086 0.100 
0.095 0.091 
0-012 0-012 
0.085 0.111 
0-759 0.759 
0.046 0.046 
0.077 0.085 
0.253 0.249 
0.324 0.327 
0.092 0.084 
0.076 0.088 
0.046 0.047 
0.091 0-095 
0.488 0.481 
0.067 0-061 
0.079 0-087 
0-149 0.146 
0.216 0.219 
0.066 0.078 
0-902 0-902 
0.020 0.019 
0-067 0-072 
0.332 0.327 
0.091 0.088 
0.080 0.069 
0.068 0.067 
0.026 0"026 
0.074 0.098 
0.679 0.680 
0.079 0.086 
0.209 0.205 
0.090 0.113 

the latter is independent  of  the section except for the 
phase factor common to all reflections, as is clear 
from (11). This is in fact true for strong reflections. 
Thus the section (or 3') dependence  of the diffraction 
pattern is quite analogous to that of  the usual super- 
structure discussed in § 2. From the analogy with the 

W" 4 t superstructure, we call reflections lth Y'.i=l hi =O, 
+1, ±2 (mod 5) the main,  the first-order satellite and 
second-order satellite reflections respectively. As 
shown in Table 1, the strong reflections are the main  
and the first-order satellites. From these facts we can 
recognize that the generalized Penrose patterns are 
the superstructures obtained from a different section 
of the same structure in R 5, though the first-order 
satellite reflections are strong in the present case. In 
order to clarify this point  of  view we introduce, in 
the next section, the 5D description of the superstruc- 
ture of a 4D crystal, which is the extension of the 
h igher-dimensional  description of the 3D superstruc- 
ture to the present case. 

6. Superstructure in the four-dimensional space 

In § 4 we showed that the generalized Penrose pattern 
is obtained from five kinds of atoms situated at 
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v ( l l l l ) ' / 5  (v = 0, +1, ±2). If we place the same atom 
at these positions, we obtain a 4D lattice with shorter 

t 4 periods. This lattice is spanned by do/= d / - ~ s = l  d~/5 
and is icosahedral. The unit-cell volume defined by 
doi is ~ of that defined by d'i. Therefore we can consider 
that the generalized Penrose pattern is the superstruc- 
ture in the 4D space. In analogy with the higher- 
dimensional description of the superstructure in the 
3D space, we obtain this pattern from a 5D lattice. 
The 5D lattice is the same as that described in § 3 
but the direct extension of the description leads to a 
different setting as shown below. 

We consider a 4D crystal with 1D modulation. 
Then the diffraction vector q of the average structure 
is defined by four unit vectors do*~ (i = 1, 2, 3, 4), which 
are reciprocal to do~ in the present case, and a 'wave 
vector' k as q=~4= 1/jdo~+/sk. The superstructure 
means that k is expressed by the rational multiple of 
do*i. The main reflection has the index 111213140:15 gives 
the order of a satellite reflection. From do/ we have 
do*~ 4 =~s=ld* '+d~* '  (i-<4) and k is given by 
y4=~ d*' /5.  Under the symmetry operations in D~o, 
the do*/are transformed into integral linear combina- 
tion of themselves and k, into + k +  K similarly to the 
transformation properties of the unit vectors in the 
higher-dimensional description of the modulated 
structure, where K is a lattice vector (Janner & 
Janssen, 1979). According to the theory of modulated 
structures, the 5D unit vectors b* are given by b* = d0*~ 
( i < 4 )  and b* = k + a s / a  (de Wolff, 1974). The corre- 
sponding unit vectors in the direct space are b~= 
d o i - a a s / 5  ( i - 4 )  and bs=as .  In the above 
expressions a is an arbitrary scale factor for the 
internal space. 

Now we compare the 5D lattice introduced above 
with that discussed in § 3. Consider the transforma- 
tion matrix T which transforms d~ into bi. When we 
choose a = - x / 5 ,  we have (i0000 / 

1 0 0 0 

0 1 0 0 . 

0 0 1 0 

\ 1  1 1 1 1 

(17) 

Because det T =  1, b/ and di span the same lattice. 
Therefore, if we place the icosahedral atom as shown 
in Fig. 3, we obtain the Penrose pattern. From T, we 

• 5 • 

obtain l~ = hi (t<-4) and 15=~i_l hi. The last relation 
means that 15 = h'5 and E~=l h ' = - 1 5  (mod 5). This 
confirms that the reflections with 4 , Y'-~=l h / =  1, +1, -+-2 
(mod 5) are in fact the main, first-order satellite and 
second-order satellite reflections as stated in the pre- 
vious section. 

In the present description, the fundamental struc- 
ture is given by a decagonal columnar atom situated 
at each lattice point. The decagonal column has the 
same height as that of the icosahedron in Fig. 3 and 

the section perpendicular to the axis has the regular 
decagon with the average area of the five planes 
shown in the figure. In the fundamental structure the 
atom is continuous along the b5 axis because an atom 
contacts with another atom belonging to an adjacent 
lattice point sharing a plane normal to the decagonal 
axis. 

The change of atom shape in the generalized Pen- 
rose pattern along the b5 axis causes a fivefold super- 
structure in the 4D space. Consequently satellite 
reflections appear in the fictitious diffraction pattern 
in the 4D space. The above discussion concludes that 
the Penrose pattern can be regarded as the superstruc- 
ture in the 4D space and the two 5D descriptions are 
equivalent except for the trivial difference in the 
setting. 

7. Superspace groups of the quasicrystals 

The matrix representation of the point group describ- 
ing the symmetry of the quasicrystals has to fulfil the 
necessary condition derived from the symmetry 
properties of the diffraction pattern. The symmetry 
operators included in the point group leave the 
diffraction pattern invariant. This means that the m- 
dimensional external space is invariant under the 
symmetry operator. Consequently, the ai ( i =  
1, 2 , . . . ,  m) are transformed into a linear combina- 
tion of themselves. In matrix notation, the rotation 
operator R is represented by an n x n matrix which 
has a form 

0 / , (18) 

where R e is an m x m matrix with real entries and 
R / is a d x d real matrix (d = n - m ) ;  0 means an 
m × d or d x m zero matrix. The action of the rotation 
operator on the lattice basis d* ( i =  1 , 2 , . . . ,  n) is 
expressed by an n x n integral matrix R and that of 
the orthogonal basis a* is given by AT/R/~7/-1 from the 
transformation property of the basis vectors described 
in § 4. The matrix representation of the symmetry 
operator is transformed into the form of (18) by the 
similarity transformation with the matrix M. This is 
analogous to the situation in the modulated structure. 
For the modulated structure with a d-dimensional 
modulation in the m-dimensional space, the sym- 
metry operator is reducible to the form of (18) by a 
similarity transformation. Therefore the point group 
describing the symmetry of the quasicrystal is (m + 
d)-reducible in the same way as that of the modulated 
structure. 

As shown in §§ 3 and 4, the hypercubic lattice in 
R 5 and icosahedral lattice in R 4 a r e  not necessary to 
obtain the generalized Penrose patterns. This is 
related to the reducibility mentioned above. The 
matrix representations are irreducible for the point 
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groups  which  leave these lattices invar iant ,  so tha t  
these latt ices are not  necessary  to describe the quasi° 
crystals. 

8. Concluding remarks 

It has been  shown  tha t  the re la t ion  of  the 4D descrip-  
t ion to the 5D one  o f  the Penrose  pat tern  co r r e sponds  
to that  o f  the 3D descr ip t ion  with the 4D one  in the 
usual  supers t ruc ture .  The h ighe r -d imens iona l  
descr ip t ion  is more  conven ien t  for  some purposes ,  
such as the der iva t ion  of  the genera l ized  Penrose  
pat tern ,  t h o u g h  the symmet ry  is given by the space 
group  in the lower -d imens iona l  space. F rom this 
v iewpoint ,  the genera l ized  Penrose  pat terns  and  thei r  
s t ructure factors  have been  der ived based  on the 5D 
descr ip t ion.  The  results o f  such ca lcu la t ions  reveal 
why the di f f ract ion pat terns  of  these s t ructures  are 
not  much  different  f rom each other,  a l t hough  the 
structures look  very different.  

From the ana logy  to the usual  supers t ruc ture  we 
can say tha t  the Penrose  pa t te rn  is the supers t ruc ture  
in the quasicrystal .  The  superspace  group  descr ib ing  
the symmet ry  of  the quas icrys ta l  is (m + d ) - r educ ib l e .  
This is also ana logous  to the s i tuat ion in the modu-  
lated structure.  

A P P E N D I X  

The uni t  vectors  d'i and  d* '  in the decagona l  system 
are re la ted  to ai with d ' i = ~ j  (SM)i ja j  and  d * ' =  
~:  (hT/S)~aj ,  where  S M  is 

, / (2 /5 )  

cl - 1 sl c 2 -  1 s2 0 

c 2 -  1 s2 c 4 -  1 s 4 0 

c 3 -- 1 s3 cl - 1 s~ 0 

c 4 -  1 $4 c 3 -  1 s3 0 

0 0 0 0 5/42 

(A1) 

and  (/17/5~) -1 is 

,/(2/5) 
C'S'C2 2i) C2 S2 C 4 $4 

C3 S3 Cl S 1 

C4 S 4 C 3 $3 

0 0 0 0 1 / , , / 2 !  I - - [  

(A2) 
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